Главная страница  Дискретный канал связи 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [ 183 ] [184] [185] [186] [187] [188] [189]

Chaudhuri codes. - IRE Trans. Inf. Theor., 1960, v. IT-6, p. 459-470. [Имеется певод: см. гл. 5, [3].] [2] Chien R. Т. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem

codes.- IEEE Trans. Inf. Theor., 1964, v. IT-10, p. 357-363. [3] Peterson W. W. Error-correcting codes.-Cambridge (Mass.): MIT Press;

New York: Wiley, 1961. [Имеется перевод: см. монографии, [1].] [4] Meggitt J. E. - Error-correcting codes for correcting bursts of errors. -

IBM J. Res. Develop., 1960, v. 4, p. 329-334. [5] Meggitt J. E. Error-correcting codes and their implementation. - IRE

Trans. Inf. Theor., 1961, v. IT-7, p. 232-244. [6] Kasami T. A decoding procedure for multiple-error-correcting cyclic codes.-

IEEE Trans. Inf. Theor., 1964, v. IT-10, p. 134-139. [7] MacWilliams F. J. Permutation decoding of systematic codes. - Bell Syst. Tech. J., 1964, v. 43, p. 485-505. [Имеется перевод: Мак-Вильямс Ф. Дж. Перестановочное декодирование систематических кодов. - В кн.: Кибернетический сборник. Новая серия. Вып. 1.-М.: Мир, 1966, с. 35-57.]

[8] Mitchell М. Е. Error-trap decoding of cyclic codes. - G. E. Report No. 62MCD3, General Electric Military Communications Department, Oklahoma City, 1962.

[9] Rudolph L., Mitchell M. E. Implementation of decoders for cyclic codes. - IEEE Trans. Inf. Theor., 1964, v. IT-10, p. 259-260.

Глава 7

[1 ] Hochquenghem A. Codes correcteurs derreurs. - Chiffres, 1959, t. 2, p. 147- 156.

[2] Bose R. C, Ray-Chaudhuri D. K. On a class of error correcting binary group codes. - Inf. and Contr., 1960, v. 3, p. 68-79. [Имеется перевод; см. гл. 1, [3].]

[3] Reed I. S., Solomon G. Polynomial codes over certain finite fields. - J. Soc. Indust. Appl. Math., 1960, v. 8, p. 300-304. [Имеется перевод: см. гл. 1, [5]. ]

[4] Kasami Т., Tokura N. Some remarks on BCH bounds and minimum weights of binary primitive BCH codes. - IEEE Trans. Inf. Theor., 1969, v. IT-15, p. 408-412.

[5] Chen C. L. Computer results on the minimum distance of some binary cyclic codes.- IEEE Trans. Inf. Theor., 1970, v. IT-16, p. 359-360.

[6] Peterson W. W. Encoding and error-correction procedures for the Bose-Chaud-huri codes. - IEEE Trans. Inf. Theor., 1960, v. IT-6, p. 459-470. [Имеется перевод: см. гл. 5, [3].]

[7] Gorenstein D. С, Zierler N. A class of error-correcting codes in p*" symbols. - J. Soz. Indust. Appl. Math., 1961, v. 9, p. 207-214. [Имеется перевод: Горенстейн Д., Цирлер Н. Класс кодов из р символов с исправ-

[10] Fire P. А class of multiple-error correcting binary codes for non-indetiefi-dent errors. - Sylvania Report RSL-E-2, Sylvania Reconnaissance Systems Lab., Mountain View, Calif., 1959.

11 Golay M. J. E. Notes on digital coding. - Proc. IRE, 1949, v. 37, p. 657.

12 McEIiece R. J, The theory of information and coding. - Reading: Addison-Wesley, 1977.

[13] Assmus E. F., Jr., Mattson H. F., Jr. Coding and combinatorics. - SIAM Rev;, 1974, v. 16, p. 349-388.

Глава 6

[ 1 ] Peterson W. W. Encoding and error-correction procedures for the Bose-



ЛёнИеМ ошибок. - В кн.: Кибернетический сборник. Вып. 7. - М.: ИЛ, 1963, с. 80-89. ]

[8] Chien R. Т. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem

codes.- IEEE Trans. Inf. Theor,, 1964, v. IT-10, p. 357-363. [9] Forney G. D., Jr. On decoding BCH codes. - IEEE Trans. Inf. Theor.,

1965, V. IT-11, p. 549-557.

[10] Berlekamp E. R. Algebraic coding theory. - New York: McGraw-Hill, 1968. {Имеется перевод: см. монографии, [3].]

[11] Massey J. L. Shift-register syntesis and BCH decoding. - IEEE Trans. Inf. Theor., 1969, v. IT-15, p. 122-127.

[12] Burton H. O. Inversionless decoding of binary BCH codes. - IEEE Trans. Inf. Theor., 1971, v. IT-17, p. 464-466.

[13] Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T. A me hod for solving key equation for decoding Goppa codes. - Inf. and Contr., 1975, v. 27, p. 87-99.

[14] Welch L. R., Scholtz R. A. Continued fractions and Berlekamps algorithm. - IEEE Trans. Inf. Theor., 1979, v. lT-25, p. 19-27.

[15] Mandelbaum D. M. Decoding beyond the designed distance for certain algebraic codes. - Inf. and Contr., 1977, p. 209-228.

Глава 8

[1] Reed I. S., Solomon G. Polynomial codes over certain finite fields. - J, SIAM, 1960, V. 8, p. 300-304. [Имеется перевод: см. гл. 1, [5].]

[2] Mattson Н. F., Solomon G. A new treatment of Bose-Chaudhuri codes. - J. Soc. Indust. Appl. Math., 1961, v. 9, p. 654-699. {Имеется перевод: Мэттсон X., Соломон Г. Новая трактовка кодов Боуза-Чоудхури. - В кн.; Теория кодирования. - М.: Мир, 1964, с. 7-29.]

{3] Mandelbaum D. М., Construction of error-correcting codes by interpolation.- IEEE Trans. Inf. Theor., 1979, v. IT-25, p. 27-35.

[4] Pollard J. M. The fast Fourier transform in a finite field -Math. Com-putat., 1971, V. 25, p. 365-374. [Имеется перевод: Поллард Дж. М. Быстрое преобразование Фурье в конечном поле. - В кн.; Макклел-лан Дж. X., Рейдер Ч. М. Применение теории чисел в цифровой обработке сигналов. - М.: Радио и связь, 1983, с. 147-155.]

{5] Gore W. С. Transmitting binary symbols with Reed-Solomon codes. - Proc. Princeton Conf. Inf. Sci. Syst., Princeton, 1973, p. 495-497.

[6] Chien R. Т., Choy D. M. Algebraic generalization of BCH-Goppa-Hel-gert codes.- IEEE Trans. Inf. Theor., 1975, v. IT-2I, p. 70-79.

[7] Lempel A., Winograd S. A new approach to error-correcting codes. - IEEE Trans. Inf. Theor., 1977, v. IT-23, p. 503-508.

[8] Chien R. T. A new proof of the BCH bound. - IEEE Trans. Inf. Theor., 1972, V. IT-18, p. 541.

[9] Wolf J. K. Adding two information symbols to certain nonbinary BCH codes and some applications. - Bell Syst. Tech. J., 1969, v. 48, p. 2405- 2424.

[10] Андрианов В. И., Сасковец В. Н. Дециклические коды. - Кибернетика,

1966, № 1, с. 1-6.

[П1 Sloane N.J. А., Reddy S. М., Chen С. L. New binary codes. - IEEE

Trans. Inf. Theor., 1972, v. IT-18, p. 503-510. [12] Kasahara M., Sugiyama Y., Hirasawa S., Namekawa T. A new class of

binary codes constructed on the basis of BCH codes. - IEEE Trans. Inf.

Theor., 1975, V. IT-21, p. 582-585. [13] Blahut R. E. On extended BCH codes. - Proc. 18th Allerton Conf. Cora-

mun. Contr. Comput., Univ. of Illinois, Monticello, 198,0, p. 50-59. [14] Hslgert H. H. Alternant codes. - Inf. and Contr., 1974, v. 26, p. 369-

381.



115] Гоппа В. Д. Новый класс линейных корректирующих кодов. - Проёлейы передачи информащ}и, 1970, вып. 3, с. 24-30.

[16] Delsarte Р. On subfield subcodes of modified Reed-Solomon codes. - IEEE Trans. Inf. Theor., 1975, v. IT-21, p. 575-576.

[17] Preparata F. P. A class of optimum nonlinear double-error-correcting codes. - Inf. and Contr., 1968, v. 13, p. 378-400. [Имеется перевод: Препарата Ф. П. Класс оптимальных нелинейных кодов с исправлением двойных ошибок. - В кн.: Кибернетический сборник. Новая серия. Вып. 7. - М.: 1970, с. 18-42.]

[18] Nordstrom А. W., Robinson J. P. An optimum linear code. - Inf. and Contr,, 1967, V. 11, p. 613-616.

[19] Nadler M. A 32-point n equals 12, d equals 5 code. - IRE Trans. Inf. Theor., 1962, v. IT-8, p. 58.

[20] Green M. W. Two heuristic techniques for block code construction. - IEEE Trans. Inf. Tljeor., 1966, v. IT-12, p. 273.

[21] Kerdock A. M. A class of low-rate nonlinear codes. - Inf. and Contr., 1972, V. 20, p. 182-187. [Имеется перевод: Кердок A. М. Класс нелинейных двоичных кодов с низкой скоростью передачи - В кн.: Кибернетический сборник. Новая серия. Вып. 10.-М.: Мир, 1973, с. 33-38.]

[22] Goethals J.-M. Nonlinear codes defined by quadratic forms over GF {2).- Inf. and Contr., 1976, v. 10, p. 43-74.

Глава 9

[1] Reed I. S., Solomon G. Polynomial codes over certain finite fields. - J. Soc. Indust. Appl. Math., 1960, v. 8, p. 300-304. [Имеется перевод: см. гл. 1, [5].]

[2] Mandelbaum D. On decoding of Reed-Solomon codes. - IEEE Trans. Inf.

Theor., 1971, v. IT-17, p. 707-712. [3] Paschburg R. H. Software implementation of error-correcting codes. -MS

thesis. - Univ. of Illinois, Urbana, 1974. [4] Gore W. C. Transmitting binary symbols with Reed-Solomon codes. -

Proc. Princeton Conf. Inf. Sci. Syst., Princeton, 1973, p. 495-497. [5] Michelson A. A fast transform in some Galois fields and an application

to decoding Reed-Solomon codes. - IEEE Abstr. of Papers - IEEE

Internal. Symp. Inf. Theor., Ronneby (Sweden), 1976. [6] Blahut R. E. Transform techniques for error-control codes. - IBM J. Res.

Develop., 1979, v. 23, p. 299-315. [7] Blahut R. E. Algebraic decoding in the frequency domain. - In: Algebraic

coding theory and practice. Ed. by G. Longo. - New York: Springer, 1979. [8] Blahut R. E. On extended BCH codes. - Proc. 18th Allerton Conf. Circ.

Syst. Theor., Univ. of Illinois, Monticello, 1980, p. 50-59. [9] Mandelbaum D. Decoding beyond the designed distance for certain algebraic

codes. - Inf. and Contr., 1977, v. 35, p. 209-228. [10] Elias P. Error-free coding. - IRE Trans. Inf. Theor., 1954, v. IT-4, p. 29-

[11] Blum R. A., Weiss A. D. Further results in error-correcting codes. - SM

thes. - MIT, Cambridge, 1960. [12] Forney G. D., Jr. On decoding BCH codes. - IEEE Trans. Inf. Theor.,

1965, V. IT-11, p. 549-557. [13] Wolf J. K. Adding two information symbols to certain nonbinary BCH codes

and some applications. - Ball Syst. Tech. J., 1969, v. 48, p. 2405-2424. [14] Kasahara M., Sugiyama Y., Hirasawa S., Namekawa Т., A new class of

binary codes constructed on the basis of BCH codes. - IEEE Trans. Inf.

Theor., 1975, v. IT-21, p. 582-585. Il5] Patterson N. J. The algebraic decoding of Goppa codes. - IEEE Trans.

Inf. Theor., 1975, v. IT-21, p. 203-207.




[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [ 183 ] [184] [185] [186] [187] [188] [189]

0.015