Главная страница  Структура цифровых систем 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [ 86 ] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189]

мому значению, которое уже не зависит от априорных сведений о значении х (Q, а определяется свойствами формирующего фильтра и помехами измерительного устройства.

В установившемся состоянии фильтр Калмана совпадает с фильтром Винера и дает то же значение оценки.

2. В дискретных системах возможна постановка задачи оптимального определения оценки х Ik] для времени t = кТ по данным измерений входного сигнала в п временных точках от t = (к - п) Г до t == {к - \) Т, т. е. задачи оптимального предсказания на один (или несколько) такт вперед. Эта задача имеет смысл и в случае равенства нулю помех измерительного устройства.

3. В дискретных системах возможна также постановка задачи оптимальной фильтрации, т. е. задачи определения оценки X [к] по данным п предыдущих измерений, включая и момент времени t = кТ. Эта задача может быть решена в случае наличия конфликтной ситуации, даваемой помехами измерений.

Применительно к цифровым системам автоматического управления и регулирования необходимо отметить следующее. В цифровой системе управления, как правило, измерение входного сигнала в момент времени t = кТ не дает возможности откорректировать ее выходную величину в этот же момент времени, так как реакция непрерывной части системы (ее приведенная весовая функция) на входной сигнал в этот же момент времени равна нулю {w [0] = 0) и она не может быть не равной нулю. Поэтому выходная величина системы в момент времени t = кТ может быть определена только в результате прогнозирования по результатам предыдущих измерений.

Указанная выше вторая задача, решаемая фильтрами Калмана, имеет очевидное практическое значение для цифровых автоматических систем. Однако следует заметить, что во многих случаях период дискретности цифровой системы управления приходится выбирать по различным соображениям (устойчивости, возможности потери входной информации и др.) сравнительно малым (тысячные и сотые доли секунды). Сама же непрерывная часть системы управления может содержать экстраполяторы, хорошо прогнозирующие требуемый выходной процесс. Такими экстраполяторами могут быть интеграторы различного вида и сами объекты управ-шцяя. Поэтому задача оптимального прогнозирования на.



такт вперед в некоторых случаях теряет свой смысл и может привести к неправильным решениям конкретной технической задачи. Однако прогнозирование на несколько тактов вперед обычно не теряет своего смысла и при малых периодах дискретности. Но в этом случае оно практически совпадает со случаем прогнозирования в непрерывных системах.

Третья задача, решаемая фильтром Калмана, имеет большие возможности, так как предполагает нахождение оптимального решения задачи построения системы управления при одновременном действии полезного сигнала и помехи. Ограничения в использовании фильтров Калмана для по строения цифровых систем управления определяются еле дующими обстоятельствами.

1. Построение фильтра Калмана предполагает полные априорные сведения о структуре формирующего фильтра, т. е. полные априорные сведения о статистических свойствах входного сигнала и полные сведения о действующих помехах. Если эти сведения малодостоверны, то оптимизация теряет здесь смысл либо следует идти по пути значительного усложнения системы за счет использования принципов адаптации.

2. Использование фильтров Калмана предполагает отсутствие ограничений на структуру оптимальной системы. Поэтому переход от требуемой теоретической структуры к реальной структуре системы управления, содержащей те или иные заданные элементы, может значительно ухудшить результаты. Эти ограничения обычно не сказываются в тех случаях, когда вся система выработки оценки многомерной величины X (t) строится, например, на ЦВМ и не включает в себя заданных заранее элементов системы управления.

3. При построении фильтра Калмана предполагается, как это будет показано ниже, что для обработки может быть использовано п предыдущих значений входных сигналов, где п - порядок разностного уравнения, описывающего формирующий фильтр (рис. 4.2). В реальных условиях работы цифровой системы управления можно использовать для обработки большее число предыдущих входных сигналов, что позволяет существенно снизить влияние помех измерения входных сигналов и получить результаты, лучшие по сравнению с фильтром Калмана.

Использование реальных фильтров. В некоторых случаях построения систем управления входной сигнал задан своими



характеристиками, но помехи отсутствуют или они сравнительно малы, в результате чего построение оптимальной системы в смысле Винера или Калмана теряет смысл. Это не означает, однако, что реальная система управления может быть построена со сколь угодно малой дисперсией ошибки. В идеализированном случае винеровского или калманов-ского фильтра на проектируемую систему не накладывается никаких предварительных ограничений. Увеличение общего коэффициента с целью повышения точности воспроизведения полезного сигнала здесь ограничивается возрастанием ошибки за счет увеличения пропускания помех, действующих на входе. Это и создает конфликтную ситуацию.

В реальных системах помехи во входном сигнале могут и отсутствовать, но увеличение общего коэффициента усиления в этом случае ограничивается приближением к колебательной границе устойчивости, которое вызывает рост ошибки за счет увеличения колебательности системы. Максимальные достижимые коэффициенты усиления в этом случае будут определяться наличием в реальной системе некоторой совокупности звеньев с малыми постоянными времени, влияние которых уже не может быть скомпенсировано.

В этом смысле наличие совокупности звеньев, характеризуемое суммой их постоянных времени или результирующим временным запаздыванием, эквивалентно по конечному результату действию на входе некоторой помехи. И в том и в другом случаях максимальная точность системы оказывается ограниченной, а дисперсия ошибки не может быть сделана меньше некоторого предельного значения.

Оценка минимальной суммы постоянных времени или суммарного временного запаздывания в проектируемой системе может быть сделана достаточно опытным конструктором при выборе ее элементов. При этом, конечно, конструктор может влиять на эту сумму в сторону ее уменьшения. Однако это может быть связано с переходом к более совершенным и дорогим элементам. Поэтому эта сумма может быть всегда оценена для данной конкретной ситуации и она зависит от уровня развития используемой техники.

Учет влияния малых постоянных времени накладывает на проектируемую систему некоторые ограничения, которых обычно нет при решении задачи оптимального синтеза. Эти ограничения в принципе могут быть учтены в виде неко-




[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [ 86 ] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] [173] [174] [175] [176] [177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189]

0.0184