Главная страница  Мультиплексирование цифровых сигналов 

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [ 28 ] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61]

4.4. Абонентский стык ISDN

Использование цифровых абонентских линий, в первую очередь, позволяет обеспечивать пользователей качественной связью, значительно расширить спектр предоставляемых услуг, увеличить скорость передачи. Развитие цифровых телефонных сетей прежде всего связано с технологией ISDN (Integrated Services Digital Network). Кроме телефонии сети ISDN позволяют: передавать данные, объединять удаленные локальные вычислительные сети (ЛВС), обеспечить доступ к Интернет, передавить трафик видеоконференцсвязи.

Технология ISDN включает базовый доступ (BRI или ВА) и первичный доступ (PRI или РА). Базовый доступ предусматривает предоставление абоненту двух каналов по 64 Кбит/с для передачи трафика (типа В) и одного канала сигнализации 16 Кбит/с (канал типа D). Первичный доступ предусматривает предоставление абоненту 30 В-каналов по 64 Кбит/с для передачи трафика и одного D-канала сигнализации (также 64 Кбит/с).

Подключение абонентов к цифровой АТС осуществляется обычно по электрическому двухпроводному кабелю:

- для базового доступа через интерфейс типа Uo,

- для первичного доступа через интерфейс f/.

При этом необходимо отметить, что МСЭ-Т не проводил стандартизацию этих интерфейсов. Для интерфейса (/о официальной причиной считается то, что физические характеристики линий, которые применяются для ISDN, в разных странах отличаются друг от друга, а форма сигнала на стыке должна быть согласована с этими характеристиками. Однако реальной причиной, по мнению многих специалистов, является совпадение интересов компаний, выпускающих телекоммуникационное оборудование, и операторов связи. Первые не хотят вносить изменения в уже разработанные ими различные стандарты для С-интерфейса, а вторые имеют возможность зарабатывать на аренде терминального оборудования.

Однако стандартные дифсистемы не могут обеспечить полного разделения трактов передачи и приема. Чтобы сохранить требуемые характеристики по переходному затуханию на ближнем конце в широкой полосе частот, вводятся эхокомпенсаторы ЭХК (рис. 4.11), которые препятствуют проникновению импульсов из тракта передачи в тракт приема.

Кроме этого, поскольку определяюшее значение на качество передачи оказывает переходное влияние на ближнем конце, то при балансировке дифсистем большое значение имеет протяженность линии передачи. Положение осложняется также наличием проводов различного диаметра и кабелей различных марок, имеющих различные характеристики, в составе одной абонентской линии. Для компенсации разброса величины входного сопротивления абонентской линии в цифровых абонентских линиях предусматривается автоматическая подстройка балансного контура дифсистемы. Однако в этом случае технически очень трудно устранить межсимвольную интерференцию, обусловленную несовершенством АРУ, автоматического корректора отраженного сигнала и системы регулирования собственно эхоком пенсатора.

Для преодоления трудностей, связанных с передачей цифровых сигналов по абонентским линиям, были предложены цифровые дифсистемы, объединенные с цифровыми эхокомпенсаторами. Последние обеспечивают подавление эхосигналов не менее чем на 45 дБ. Поэтому применение их на абонентских линиях особенно целесообразно.



Несмотря на это в абонентском доступе ISDN нет такого многообразия, как при цифровом абонентском доступе. В настоящее время в мире используется в основном три типа U-интерфейса, которые различаются протоколами линейного кодирования: 2B1Q, 4ВЗР и t/,o. Из них в Европе наибольшее распространение получило использование кода 2B1Q с обеспечением дистанционного питания терминального оборудования через интерфейс U номинальным напряжением 90-120 В. Такое решение поддерживается практически всеми европейскими компаниями (Siemens, Ericsson, Alcatel, Italtel и др.). Поэтому существует большая степень вероятности, что терминальное оборудование абонента будет взаимодействовать с используемой цифровой АТС.

На стороне цифровой АТС абонентские линии включаются в линейные комплекты (LT) и станционные окончания (ЕТ), которые для каждой станции являются частью оборудования абонентских комплектов.

Структура интерфейса {7*2 также не стандартизирована, поскольку обычно данный интерфейс соответствует физическим и канальным характеристикам, а также цикловой структуре стандартного канала Е1 (рекомендации G.703, G.704 МСЭ-Т).

Основные различия между возможностями интерфейсов Uq и t/ состоят в следующем;

- соединение для PRI возможно только для режима «точка-точка». BR1 может поддерживать режим соединения «точка-многоточка»;

- питание интерфейса PR1 должно обеспечиваться либо отдельным каналом питания, либо отдельным блоком питания;

- физический уровень PRI постоянно активен (что обусловлено применением этого интерфейса в основном для оборудования, работающего постоянно). В связи с этим процедуры активации и дезактивации интерфейса PR1 отсутствуют;

- для организации обмена сигнальной информацией в PRI и в BRI используется выделенный канал (£)-канал), который обычно соответствует 16-му канальному интервалу ИКМ.

В интерфейсах типа U могут использоваться протоколы, основные из которых приведены в табл. 4.3. В Европе наибольшее распространение из них получил протокол E-DSS1 (другие названия евро-ISDN, ETS1). В России и Беларуси E-DSS1 одобрен в качестве национального стандарта для ISDN сетей.

Таблица 4.3. Протоколы для сети ISDN

Протокол

Взаимодействие с АТС

Область распространения

E-DSS1

со всеми

Европа

CorNet-T

Siemens

Европа

CorNet-N

Siemens

Европа

lTR-6

Bosch/Telenorma

Германия

TN1R6-T

Bosch/Telenorma

Германия

TN1R6-N

Bosch/Telenorma

Германия

N1-1, N1-2

Lucent, NORTEL, Harris

Северная Америка

Как показано на рис. 4.12, к цифровой АТС подключаются сетевые окончания NT: WBA или lTPA. (В некоторых случаях при первичном доступе функции NTPA могут включаться в УПАТС.) Назначение сетевого окончания - преобразование интерфейса U в



интерфейс So (интерфейс «пользователь-сеть») для подключения ISDN оборудования. Интерфейс iSo использует 4-проводную линию связи и стандартизирован в рекомендациях МСЭ-Т 1.430, Q.921, Q.931. Ряд цифровых АТС имеют встроенные стыки типа So для непосредственного включения ISDN оборудования - в случае, когда расстояние между оборудованием и АТС не превышают нескольких сотен метров.

ISDN терминал

ISDN телефон (факс, модем)

ISDN терминал

аналоговый телефон

ISDN телефон (факс, модем)

NTBA

ISDN терминал

аналог, тел. R

Учрежденческая АТС

Основной доступ 2B+D

NT +


Первичный доступ 30B+D

Рис. 4.12. Примеры подключений в сети ISDN

В заключение отметим, что интерфейсы BRI и PR] широко используются для подключения учрежденческих АТС к телефонной сети общего пользования (интерфейс BRI обеспечивает 2 соединительные линии, а PRI - 30 соединительных линий) благодаря удобству использования в них протокола E-DSS1. Хотя такие стыки, в принципе, должны считаться уже на абонентскими, а сетевыми.

4.5. Сетевые стыки цифровых АТС

Под сетевым стыком будем понимать точку подключения к цифровой АТС оборудования, отличного от абонентского. Это могут быть другие АТС, устройства сопряжения с сетями доступа, передачи данных, управления и др. Практически невозможно в одной главе рассмотреть все многообразие сетевых стыков и их подробные характеристики. Поэтому мы остановимся на наиболее, с точки зрения авторов, важных из них.




[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [ 28 ] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61]

0.0191