Главная страница  Метод функций Ляпунова 

[ 0 ] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]

Метод функций Ляпунова

В основу данной книги положены лекции, прочитанные автором в Уральском государственном университете им. А.М.Горького для студентов-математиков старших курсов. Эти лекции посещали также научные работники и инженеры, интересующиеся приложением методов теории устойчивости. Указанное обстоятельство явилось причиной ряда специфических особенностей предлагаемого курса. С одной стороны, автором руководило стремление дать слушателям-математикам представление о современном уровне развития теории устойчивости, показать связь этой теории с другими областями математики, познакомить с новейшими методами исследования, наконец, изложить результаты самого автора и его учеников. С другой стороны, автор понимал, что слушатели не должны были уходить с лекций, унося в голове только голые математические конструкции. Поэтому на лекциях каждый математический факт обсуждался с точки зрения его применимости и ценности в прикладных вопросах. К сожалению, мы не нашли возможным включить все такие обсуждения в эту книгу, однако специфика подбора материала отражает в достаточной степени указанную выше ситуацию.

В первой главе рассматриваются вопросы метода функций Ляпунова. Этот метод был развит в книге А. М. Ляпунова «Общая задача об устойчивости движения», вышедшей из печати в 1892 г. Дальнейшему развитию метода функций Ляпунова были посвящены известные монографии А. И. Лурье [22], Н. Г. Четаева [26], И. Г. Малкина [8], А. М. Летова [23], Н. Н. Красовского [7], В. И. Зубова [138] у нас в СССР и Ж. Ла-Салля, С. Лефшеца [И], В. Гана [137] за рубежом.

В нашей книге, далеко не претендующей на полноту, не изложены даже в полном объеме те теоремы, которые вошли в знаменитую монографию А. М. Ляпунова. Здесь нами рас-



смотрены только автономные системы. В линейном случае мы ограничились обзором функций Ляпунова только в виде квадратичных форм. В нелинейном случае не обсуждается вопрос об обратимости теорем об устойчивости и неустойчивости.

С другой стороны, в первой главе подробно обсуждаются вопросы устойчивости при любых начальных возмущениях. Как известно, эта теория возникла в 1950-1955 гг. Первые существенные результаты в этой области принадлежат Н.П. Еру-гину [133-135,16]. А. И. Лурье и И. Г. Малкину принадлежит заслуга привлечения к указанным вопросам метода функций Ляпунова. Значительную роль в развитии теории устойчивости в целом сыграли теоремы типа теорем 5.2, 6.3, 12.2, приведенных в первой главе. В этих теоремах свойство устойчивости обусловливается наличием функции Ляпунова, имеющей знакопостоянную, а не знакоопределенную, как это требуется в некоторых теоремах Ляпунова, производную по времени. Особая роль этих теорем объясняется тем, что почти любая попытка построения простых функций Ляпунова для нелинейных систем приводит к функциям с указанным свойством.

При изложении материала первой главы в любом удобном случае показывается методика построения функций Ляпунова. В конце главы даны примеры, каждый из которых представляет самостоятельный интерес.

Вторая глава посвящена вопросам устойчивости систем с переменной структурой. С математической точки зрения такие системы представляют весьма узкий класс систем дифференциальных уравнений с разрывными правыми частями. Однако именно благодаря этому факту автору вместе с его сотрудниками удалось построить более или менее полную и стройную теорию для рассматриваемого класса систем. Следует отметить важность исследования устойчивости систем с переменной структурой, так как такие системы позволяют осуществлять стабилизацию объектов с существенно переменными параметрами. Часть результатов второй главы получена совместно с инженерами, которые осуществляли как разработку отдельных направлений теории, так и моделирование исследуемых систем.

Метод функций Ляпунова также нашел здесь свое применение, однако заинтересованный читатель может познакомиться с содержанием этой главы независимо от предыдущей.



В третьей главе обсуждаются вопросы устойчивости решений дифференциальных уравнений в банаховых пространствах. Намерение включить эту главу в книгу появилось в силу следующих обстоятельств. Прежде всего, к моменту начала работы над этой главой не было монографий и фундаментальных работ, посвященных указанным вопросам, за исключением статей Л. Массера и Д. Шеффера [94, 95,139, 140]. Автором руководило также желание продемонстрировать роль методов функционального анализа в теории устойчивости. Первый результат в этом направлении принадлежит М. Г. Крей-ну [99]. В дальнейшем Л. Массера и Д. Шеффер, опираясь, в частности, на метод М. Г. Крейна, значительно развили теорию устойчивости в функциональных пространствах. К моменту завершения работы над этой главой вышла из печати книга М. Г. Крейна [75]. Однако различие научных интересов автора указанной выше книги и автора данной книги привело к тому, что пересечение результатов имеет место только в общих вопросах.

Отметим особенности изложения материала в третьей главе нашей работы. Нами дана трактовка задачи о накоплении возмущений как задача отыскания нормы оператора, преобразующего входной сигнал в выходной. Далее, значительное место уделено теоремам Л. Массера и Д. Шеффера, причем снова эти теоремы рассматриваются с точки зрения накопления возмущений, но уже на пблубесконечном интервале времени.

В настоящее время стала очень распространенной точка зрения на устойчивость, как на устойчивость по отношению к возмущению входного сигнала. Предположим, что некоторое звено системы автоматического регулирования преобразует входной сигнал в некоторый сигнал. Закон преобразования этих сигналов Задается некоторым оператором. Устойчивость состоит в том, что малое возмущение входного сигнала вызывает малое возмущение выходного сигнала. С математической точки зрения указанное свойство соответствует свойству непрерывности рассматриваемого оператора. Представляет интерес дать внутреннюю характеристику таких операторов. Как правило, эта характеристика сводится к описанию асимптотического поведения матрицы Коши (переходных функций). Именно в таком плане мы и рассматриваем результаты § 5 и 6.

Следует заметить, что асимптотическое поведение матрицы Коши линейной системы полностью характеризуется поведе-




[ 0 ] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72]

0.0211